Identification of the transcriptional targets of FOXP2, a gene linked to speech and language, in developing human brain.

نویسندگان

  • Elizabeth Spiteri
  • Genevieve Konopka
  • Giovanni Coppola
  • Jamee Bomar
  • Michael Oldham
  • Jing Ou
  • Sonja C Vernes
  • Simon E Fisher
  • Bing Ren
  • Daniel H Geschwind
چکیده

Mutations in FOXP2, a member of the forkhead family of transcription factor genes, are the only known cause of developmental speech and language disorders in humans. To date, there are no known targets of human FOXP2 in the nervous system. The identification of FOXP2 targets in the developing human brain, therefore, provides a unique tool with which to explore the development of human language and speech. Here, we define FOXP2 targets in human basal ganglia (BG) and inferior frontal cortex (IFC) by use of chromatin immunoprecipitation followed by microarray analysis (ChIP-chip) and validate the functional regulation of targets in vitro. ChIP-chip identified 285 FOXP2 targets in fetal human brain; statistically significant overlap of targets in BG and IFC indicates a core set of 34 transcriptional targets of FOXP2. We identified targets specific to IFC or BG that were not observed in lung, suggesting important regional and tissue differences in FOXP2 activity. Many target genes are known to play critical roles in specific aspects of central nervous system patterning or development, such as neurite outgrowth, as well as plasticity. Subsets of the FOXP2 transcriptional targets are either under positive selection in humans or differentially expressed between human and chimpanzee brain. This is the first ChIP-chip study to use human brain tissue, making the FOXP2-target genes identified in these studies important to understanding the pathways regulating speech and language in the developing human brain. These data provide the first insight into the functional network of genes directly regulated by FOXP2 in human brain and by evolutionary comparisons, highlighting genes likely to be involved in the development of human higher-order cognitive processes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A 785kb deletion of 3p14.1p13, including the FOXP1 gene, associated with speech delay, contractures, hypertonia and blepharophimosis.

We report a child with a 785kb deletion of the 3p14.1p13 region including the genes FOXP1, EIF4E3, PROK2, GPR27 resulting in speech delay, contractures, hypertonia and blepharophimosis. FOXP1 and FOXP2 are transcription factors containing a polyglutamine tract and a forkhead DNA binding domain. They both play a role in the developing human foregut and brain [W. Shu, M.M. Lu, Y. Zhang, P. Tucker...

متن کامل

FOXP2 targets show evidence of positive selection in European populations.

Forkhead box P2 (FOXP2) is a highly conserved transcription factor that has been implicated in human speech and language disorders and plays important roles in the plasticity of the developing brain. The pattern of nucleotide polymorphisms in FOXP2 in modern populations suggests that it has been the target of positive (Darwinian) selection during recent human evolution. In our study, we searche...

متن کامل

Foxp2 Regulates Gene Networks Implicated in Neurite Outgrowth in the Developing Brain

Forkhead-box protein P2 is a transcription factor that has been associated with intriguing aspects of cognitive function in humans, non-human mammals, and song-learning birds. Heterozygous mutations of the human FOXP2 gene cause a monogenic speech and language disorder. Reduced functional dosage of the mouse version (Foxp2) causes deficient cortico-striatal synaptic plasticity and impairs motor...

متن کامل

Developing a Semantic Similarity Judgment Test for Persian Action Verbs and Non-action Nouns in Patients With Brain Injury and Determining its Content Validity

Objective: Brain trauma evidences suggest that the two grammatical categories of noun and verb are processed in different regions of the brain due to differences in the complexity of grammatical and semantic information processing. Studies have shown that the verbs belonging to different semantic categories lead to neural activity in different areas of the brain, and action verb processing is r...

متن کامل

The language-related transcription factor FOXP2 is post-translationally modified with small ubiquitin-like modifiers.

Mutations affecting the transcription factor FOXP2 cause a rare form of severe speech and language disorder. Although it is clear that sufficient FOXP2 expression is crucial for normal brain development, little is known about how this transcription factor is regulated. To investigate post-translational mechanisms for FOXP2 regulation, we searched for protein interaction partners of FOXP2, and i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of human genetics

دوره 81 6  شماره 

صفحات  -

تاریخ انتشار 2007